NEW CENTRAL POLYNOMIALS FOR THE MATRIX ALGEBRA

BY

V. Drensky*

Institute of Mathematics

Bulgarian Academy of Sciences

Akad. G. Bonchev Str. Block 8, 1113 Sofia, Bulgaria

ABSTRACT

For $n \ge 3$ we find a central polynomial of degree $(n-1)^2 + 4$ for the $n \times n$ matrix algebra over a field of characteristic 0. For n = 3, 4 our polynomial coincides with the known central polynomials of minimal degree and for n > 4 the result gives new central polynomials. Until now, for n > 4 the minimal degree of the known central polynomials was n^2 .

Introduction

Let $K\langle X\rangle$ be the free associative algebra over a field K of characteristic 0. An element $f(x_1, x_2, \ldots, x_m) \in K\langle X\rangle$ is called a **central polynomial** for the $n \times n$ matrix algebra $M_n(K)$ if $f(r_1, r_2, \ldots, r_m)$ lies in the center of $M_n(K)$ for all $r_1, r_2, \ldots, r_n \in M_n(K)$, and f is not a polynomial identity for $M_n(K)$. The first central polynomials for any n were constructed by Formanek and Razmyslov in [5] and [9] with two different methods. The construction of Formanek yields a central polynomial of degree n^2 . The original Razmyslov polynomial was of higher degree but Halpin [7] showed that the method of [9] also gives rise to a central polynomial of degree n^2 . For a long time this value was thought to be the minimal value for the degree of central polynomials for $n \times n$ matrices, and this is in fact the case for n = 1 and n = 2. But the author with Kasparian in [2] and with Piacentini Cattaneo in [3] found central polynomials of degree 8 for

^{*} Partially supported by the Alexander von Humboldt Foundation in Germany and by Grant MM2/91 of the Ministry of Education and Science in Bulgaria.

Received October 10, 1993

236 V. DRENSKY Isr. J. Math.

 $M_3(K)$ and of degree 13 for $M_4(K)$, respectively. The main result of this paper is that we construct a central polynomial for $M_n(K)$ of degree $(n-1)^2+4$ for any $n \geq 3$. For n > 4 our central polynomial is of degree less than the minimal known degree n^2 . For n = 3 it is of minimal possible degree as it was shown in [1]. For n = 4 we obtain the same central polynomial as in [3] which is of minimal known degree and agrees with the conjecture of Formanek [6] that the minimal degree of the central polynomials for $M_n(K)$ is $(n^2 + 3n - 2)/2$. To obtain the central polynomial of degree $(n-1)^2 + 4$ we give explicitly the following essentially weak polynomial identity for $M_n(K)$:

$$w(x, y_1, \dots, y_n) = s_{2n-2}(x, x^2, \dots, x^{n-3}, x^n, y_1, \dots, y_n)$$

$$+ \sum_{i=1}^n x s_{2n-2}(x, x^2, \dots, x^{n-3}, x^{n-2}, y_1, \dots, y_i x, \dots, y_n)$$

$$+ \sum_{1 \le i < j \le n} s_{2n-2}(x, x^2, \dots, x^{n-3}, x^{n-2}, y_1, \dots, y_i x, \dots, y_j x, \dots, y_n),$$

where $s_m(x_1, \ldots, x_m)$ is the standard polynomial of degree m. By the Razmyslov approach in [9] this gives rise to a central polynomial of the right degree. Our essentially weak polynomial identity is a generalization of these found by the author and Rashkova [4] for n = 3 and in [3] for n = 4. Our starting point was [3] and we follow its exposition. We also refer to [3] for the missing details.

1. Preliminaries

Let K be a field of characteristic zero. We denote by $K\langle X \rangle$ the free associative algebra over K freely generated by a countable set of variables $X = \{x_1, x_2, \ldots\}$ and by $K\langle x_1, \ldots, x_m \rangle$ the subalgebra of rank m. We also use other variables, e.g. x, y_1, \ldots, y_n , to denote the free generators. We recall some background.

 α) To a polynomial

$$g(t_1,\ldots,t_{n+1}) = \sum \alpha_p t_1^{p_1} \cdots t_{n+1}^{p_{n+1}}$$

in n+1 commuting variables t_1, \ldots, t_{n+1} we associate the polynomial

$$\phi(g) = \phi(g)(x, y_1, \dots, y_n) = \sum_{n} \alpha_n x^{p_1} y_1 x^{p_2} y_2 \cdots x^{p_n} y_n x^{p_{n+1}}$$

from $\in K\langle x, y_1, \ldots, y_n \rangle$. Every $f = f(x, y_1, \ldots, y_n) \in K\langle x, y_1, \ldots, y_n \rangle$ which is multilinear in y_1, \ldots, y_n may be written in the form

$$f = \sum \alpha_{rp} x^{p_1} y_{r_1} x^{p_2} y_{r_2} \cdots x^{p_n} y_{r_n} x^{p_{n+1}} = \sum \phi(g_r)(x, y_{r_1}, \dots, y_{r_n}).$$

eta) Let n be fixed and let e_{ij} , $i,j=1,\ldots,n$, be the matrix units from $M_n(K)$. To any set $\{\bar{y}_q=e_{i_qj_q}|\ q=1,\ldots,n\}$ we relate an oriented graph with n vertices $1,2,\ldots,n$ and edges $(i_q,j_q),\ q=1,\ldots,n$. In order to check if $f(x,y_1,\ldots,y_n)=\sum \phi(g_r)(x,y_{r_1},\ldots,y_{r_n})$ is a polynomial identity for $M_n(K)$ it is sufficient to calculate $f(\bar{x},\bar{y}_1,\ldots,\bar{y}_n)$ for $\bar{x}=\rho_1e_{11}+\cdots+\rho_ne_{nn}$, where ρ_1,\ldots,ρ_n are commuting variables and $\bar{y}_q=e_{i_qj_q},\ q=1,\ldots,n$, for all possible $(i_q,j_q),\ q=1,\ldots,n$. Then

$$\phi(g)(\bar{x}, e_{i_1 j_1}, \dots, e_{i_n j_n}) = \delta g(\rho_{i_1}, \rho_{i_2}, \dots, \rho_{i_n}, \rho_{j_n}) e_{i_1 j_n},$$

where δ equals 1 or 0, depending on whether $(i_1, j_1), (i_2, j_2), \ldots, (i_n, j_n)$ is or is not a path in the graph.

Definition: A polynomial $f(x_1, ..., x_m) \in K\langle X \rangle$ is called a **weak polynomial** identity for $M_n(K)$ if $f(x_1, ..., x_m)$ vanishes when evaluated on all elements of the Lie algebra sl_n of all traceless matrices of $M_n(K)$. If the weak polynomial identity is not a polynomial identity for $M_n(K)$ it is called an **essentially weak** polynomial identity.

 γ) Let the polynomial $f(x,y_1,\ldots,y_n)\in K\langle x,y_1,\ldots,y_n\rangle$ be multilinear in y_1,\ldots,y_n . In order to prove that $f(x,y_1,\ldots,y_n)$ vanishes for all $\bar x\in sl_n$ and all $\bar y_1,\ldots,\bar y_n\in M_n(K)$ it is sufficient to consider $\bar x=\rho_1e_{11}+\cdots+\rho_ne_{nn}$, where ρ_1,\ldots,ρ_n are commuting variables satisfying $\rho_1+\cdots+\rho_n=0$ and $\bar y_q=e_{i_qj_q},$ $q=1,\ldots,n$. Let us assume that $f(x,y_1,\ldots,y_n)=\sum \phi(g_r)(x,y_{r_1},\ldots,y_{r_n})$ is a polynomial identity for $M_{n-1}(K)$. If $f(\bar x,\bar y_1,\ldots,\bar y_n)\neq 0$ then the graph related to $\bar y_q=e_{i_qj_q},$ $q=1,\ldots,n$, contains a path $(i_{r_1},j_{r_1}),\ldots,(i_{r_n},j_{r_n})$ going through all the n vertices. Up to a permutation of the indices $1,\ldots,n$, this is one of the paths $(1,2),\ldots,(i,i+1),\ldots,(j-1,j),(j,i),(i,j+1),\ldots,(n-1,n),$ where $i\leq j$. Now, if $g_r(t_1,\ldots,t_i,t_{i+1},\ldots,t_j,t_i,t_{j+1},\ldots,t_n)$ is divisible by $t_1+t_2+\cdots+t_n$ for all $i\leq j$, this means that $f(\bar x,\bar y_1,\ldots,\bar y_n)$ vanishes for $\bar x\in sl_k$ and $\bar y_1,\ldots,\bar y_n\in M_n(K)$.

2. The weak polynomial identity

The main result of this section is the following.

THEOREM 1: Let K be a field of characteristic 0. The polynomial

$$w(x, y_1, \dots, y_n) = s_{2n-2}(x, x^2, \dots, x^{n-3}, x^n, y_1, \dots, y_n)$$

$$+ \sum_{i=1}^n x s_{2n-2}(x, x^2, \dots, x^{n-3}, x^{n-2}, y_1, \dots, y_i x, \dots, y_n)$$

$$+ \sum_{1 \le i < j \le n} s_{2n-2}(x, x^2, \dots, x^{n-3}, x^{n-2}, y_1, \dots, y_i x, \dots, y_j x, \dots, y_n)$$

from $K\langle x, y_1, \ldots, y_n \rangle$ is an essentially weak polynomial identity for $M_n(K)$, $n \geq 3$, and $w(\bar{x}, \bar{y}_1, \ldots, \bar{y}_n) = 0$ for all $\bar{x} \in sl_n$ and all $\bar{y}_1, \ldots, \bar{y}_n \in M_n(K)$.

The proof of the theorem is based on several lemmas.

LEMMA 1: Let $d_1, d_2, \ldots, d_{n-2}$ be positive integers, $d = (d_1, d_2, \ldots, d_{n-2})$ and let

$$f_d(x, y_1, \ldots, y_n) = s_{2n-2}(x^{d_1}, x^{d_2}, \ldots, x^{d_{n-2}}, y_1, \ldots, y_n).$$

Let $\bar{x} = \sum_{p=1}^{n} \rho_p e_{pp}$, where ρ_1, \ldots, ρ_n are commuting variables, $\bar{y}_q = e_{i_q j_q} \in M_n(K)$, $q = 1, \ldots, n$. Then

$$f_d(\bar{x}, \bar{y}_1, \dots, \bar{y}_n) = \sum_{\sigma \in S_n} (\operatorname{sign} \sigma) g_d(\rho_{\sigma(i_1)}, \rho_{\sigma(i_2)}, \dots, \rho_{\sigma(i_n)}, \rho_{\sigma(j_n)}) \bar{y}_{\sigma(1)} \dots \bar{y}_{\sigma(n)},$$

where $g(t_1, t_2, \ldots, t_{n+1}) \in K[t_1, t_2, \ldots, t_{n+1}],$

$$g_d(t_1, t_2, \dots, t_{n+1}) = \sum_{\substack{k_1 < \dots < k_{n-2} \\ t_{k_1}}} \pm \begin{vmatrix} t_{k_1}^{d_1} & t_{k_2}^{d_1} & \dots & t_{k_{n-2}}^{d_1} \\ t_{k_1}^{d_2} & t_{k_2}^{d_2} & \dots & t_{k_{n-2}}^{d_2} \\ \vdots & \vdots & \ddots & \vdots \\ t_{k_1}^{d_{n-2}} & t_{k_2}^{d_{n-2}} & \dots & t_{k_{n-2}}^{d_{n-2}} \end{vmatrix}$$

and the sign ± 1 is equal to the sign of the permutation in the summand of f_d

$$y_1 \cdots y_{k_1-1} x^{d_1} y_{k_1} \cdots y_{k_2-1} x^{d_2} \cdots x^{d_{n-3}} y_{k_{n-3}} \cdots y_{k_{n-2}-1} x^{d_{n-2}} y_{k_{n-2}} \cdots y_n$$

In particular, $g_d(t_1, \ldots, t_{n+1}) = 0$ if $d_i = d_j$ for some $1 \le i < j \le n-2$.

Proof: Let $\bar{x} = \rho_1 e_{11} + \dots + \rho_n e_{nn}$ and let \bar{y}_q be matrix units, $q = 1, \dots, n$. If $\bar{z}_1 = \bar{x}^{d_1}, \dots, \bar{z}_{n-2} = \bar{x}^{d_{n-2}}, \bar{z}_{n-1} = \bar{y}_1, \dots, \bar{z}_{2n-2} = \bar{y}_n$ then

$$f_d(\bar{x}, \bar{y}_1, \dots, \bar{y}_n) = \sum_{\sigma \in S_{n-2}} (\operatorname{sign} \sigma) \bar{z}_{\sigma(1)} \cdots \bar{z}_{\sigma(2n-2)}.$$

If for $\rho \in S_{2n-2}$ there exists an i such that $\bar{z}_{\rho(i)} = \bar{x}^{d_{p_1}}$ and $\bar{z}_{\rho(i+1)} = \bar{x}^{d_{p_2}}$, then the summand $(\operatorname{sign} \rho)\bar{z}_{\rho(1)}\cdots\bar{z}_{\rho(2n-2)}$ participates in $f_d(\bar{x},\bar{y}_1,\ldots,\bar{y}_n)$ together with $-(\operatorname{sign} \rho)\bar{z}_{\rho(1)}\cdots\bar{z}_{\rho(i-1)}\bar{z}_{\rho(i)}\bar{z}_{\rho(i)}\bar{z}_{\rho(i+2)}\cdots\bar{z}_{\rho(2n-2)}$. Since

$$\bar{z}_{\rho(i)}\bar{z}_{\rho(i+1)} - \bar{z}_{\rho(i+1)}\bar{z}_{\rho(i)} = \bar{x}^{d_{p_1}}\bar{x}^{d_{p_2}} - \bar{x}^{d_{p_2}}\bar{x}^{d_{p_1}} = 0,$$

the contribution to $f_d(\bar{x}, \bar{y}_1, \dots, \bar{y}_n)$ is given only by these summands such that no $\bar{x}^{d_{p_1}}$ and $\bar{x}^{d_{p_1}}$ are adjacent. In virtue of β) from Section 1

$$f_d(\bar{x}, \bar{y}_1, \dots, \bar{y}_n) = \sum_{\sigma \in S_n} (\operatorname{sign} \sigma) g_d(\rho_{\sigma(i_1)}, \rho_{\sigma(i_2)}, \dots, \rho_{\sigma(i_n)}, \rho_{\sigma(j_n)}) \bar{y}_{\sigma(1)} \cdots \bar{y}_{\sigma(n)}$$

for some polynomial $g_d(y_1,\ldots,y_{n+1})\in K[t_1,\ldots,t_{n+1}].$ The polynomial g_d is obtained from

$$\phi(g_d)(x, y_1, \dots, y_n) = \sum_{k_1 < \dots < k_{n-2}} \sum_{\tau \in S_{n-2}} y_1 \cdots y_{k_1-1} x^{d_{\tau(1)}} \times$$

$$\times y_{k_1} \cdots y_{k_2-1} x^{d_{\tau(2)}} \cdots x^{d_{\tau(n-3)}} y_{k_{n-3}} \cdots y_{k_{n-2}-1} x^{d_{\tau(n-2)}} y_{k_{n-2}} \cdots y_n.$$

Hence

$$g_d(t_1,\ldots,t_{n+1}) = \sum_{k_1 < \ldots < k_{n-2}} \pm u_k(t_1,\ldots,t_{n+1}),$$

where $k = (k_1, \ldots, k_{n-2})$ and

$$u_k(t_1,\ldots,t_{n+1}) = \sum_{\tau \in S_{n-2}} (\operatorname{sign} \tau) t_{k_1}^{d_{\tau(1)}} \cdots t_{k_{n-2}}^{d_{\tau(n-2)}}.$$

Obviously $u_k(t_1, \ldots, t_{n+1})$ is equal to the determinant of the $(n-2) \times (n-2)$ matrix with entry $t_{k_q}^{d_p}$ in the p-th row and the q-th column. Clearly the sign ± 1 in the sum $\sum \pm u_k(t_1, \ldots, t_{n+1})$ is the same as prescribed in the statement of the lemma.

LEMMA 2: For the polynomial $g_d(t_1, \ldots, t_{n+1})$ from Lemma 1 and for $1 \le i \le n$

$$g_d(t_1,\ldots,t_{i-1},0,0,t_{i+2},\ldots,t_{n+1})$$

is equal up to a sign to the determinant

$$\Delta_i = \begin{vmatrix} 1 & \dots & 1 & 1 & \dots & 1 \\ t_1^{d_1} & \dots & t_{i-1}^{d_1} & t_{i+2}^{d_1} & \dots & t_{n+1}^{d_1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ t_1^{d_{n-2}} & \dots & t_{i-1}^{d_{n-2}} & t_{i+2}^{d_{n-2}} & \dots & t_{n+1}^{d_{n-2}} \end{vmatrix}.$$

Proof: By Lemma 1, $g_d(t_1, \ldots, t_{i-1}, 0, 0, t_{i+2}, \ldots, t_{n+1})$ is equal to a linear combination with coefficients ± 1 of the determinants of the $(n-2) \times (n-2)$ matrices $\begin{pmatrix} t_{k_q}^{d_p} \end{pmatrix}$ such that i and i+1 do not participate between the indices $k_1 < \cdots < k_{n-2}$. Hence in the notation of the proof of Lemma 1

$$g_d(t_1,\ldots,t_{i-1},0,0,t_{i+2},\ldots,t_{n+1}) = \sum \pm u_k(t_1,\ldots,t_{n+1}),$$

where the summation runs on all $k=(k_1,\ldots,k_{n-2})$ such that $1\leq k_1<\cdots< k_{n-2}\leq n+1,\ k_q\neq i,i+1,\ q=1,\ldots,n-2$. The same determinants $u_k(t_1,\ldots,t_{n+1})$ participate in the extension by the first row of the $(n-1)\times(n-1)$ determinant Δ_i . The only problem is to show that the signs in both the expressions are the same. For

$$j \neq i, i+1$$
 and $k = (1, \dots, i-1, i+2, \dots, j-1, j+1, \dots, n+1)$

the sign of $\bar{u}_i = u_k$ in $g_d(t_1, \dots, t_{i-1}, 0, 0, t_{i+2}, \dots, t_{n+1})$ is equal to the sign of

$$(x^{d_1}y_1)\cdots(x^{d_{i-1}}y_{i-1})y_iy_{i+1}(x^{d_i}y_{i+2})\cdots\times$$

$$\times (x^{d_{j-3}}y_{i-1})y_i(x^{d_{j-3}}y_{i+1})\cdots (x^{d_{n-3}}y_n)x^{d_{n-2}}$$

in the expression of $s_{2n-2}(x^{d_1}, \ldots, x^{d_{n-2}}, y_1, \ldots, y_n)$. Obviously for j > i+1 (or for j < i-1) the signs of \bar{u}_j and \bar{u}_{j+1} in both g_d and Δ_i are opposite, the same holds for the signs of \bar{u}_{i-1} and \bar{u}_{i+2} . Hence

$$\Delta_i = \bar{u}_1 - \bar{u}_2 + \dots \pm \bar{u}_{i-1} \mp \bar{u}_{i+2} \pm \dots \pm \bar{u}_{n+1}$$
$$= \pm q_d(t_1, \dots, t_{i-1}, 0, 0, t_{i+2}, \dots, t_{n+1}). \quad \blacksquare$$

LEMMA 3: For $g_d(t_1, \ldots, t_{n+1})$ from Lemma 1 and $1 \le i \le n$

$$g_d(t_1,\ldots,t_{n+1}) + g_d(t_1,\ldots,t_{i-1},t_{i+1},t_i,t_{i+2},\ldots,t_{n+1})$$

$$= 2g_d(t_1,\ldots,t_{i-1},0,0,t_{i+2},\ldots,t_{n+1}).$$

Therefore

$$g_d(t_1,\ldots,t_{i-1},t_i,t_i,t_{i+1},\ldots,t_n)=g_d(t_1,\ldots,t_{i-1},0,0,t_{i+1},\ldots,t_n).$$

Proof: We consider the case i = 1; the proof for i arbitrary is similar. By Lemma 1

$$g_d(t_1, t_2, t_3, \ldots, t_{n+1}) =$$

$$\sum \pm \begin{vmatrix} t_1^{d_1} & t_2^{d_1} & t_{k_3}^{d_1} & \dots & t_{k_{n-2}}^{d_1} \\ t_1^{d_{n-2}} & t_2^{d_{n-2}} & t_{k_3}^{d_{n-2}} & \dots & t_{k_{n-2}}^{d_{n-2}} \end{vmatrix} + \sum_{k_1 > 2} \pm \begin{vmatrix} t_{k_1}^{d_1} & \dots & t_{k_{n-2}}^{d_1} \\ t_{k_1}^{d_{n-2}} & \dots & t_{k_{n-2}}^{d_{n-2}} \end{vmatrix} + \sum_{k_2 \ge 2} \pm \begin{pmatrix} t_{k_1}^{d_1} & \dots & t_{k_{n-2}}^{d_1} \\ t_{k_1}^{d_2} & \dots & t_{k_{n-2}}^{d_{n-2}} \\ \vdots & \vdots & \vdots & \vdots \\ t_{k_2}^{d_{n-2}} & t_{k_2}^{d_2} & \dots & t_{k_{n-2}}^{d_{n-2}} \end{vmatrix} - \begin{pmatrix} t_{k_2}^{d_1} & t_{k_2}^{d_1} & \dots & t_{k_{n-2}}^{d_1} \\ \vdots & \vdots & \vdots & \vdots \\ t_{k_2}^{d_{n-2}} & t_{k_2}^{d_{n-2}} & \dots & t_{k_{n-2}}^{d_{n-2}} \end{pmatrix}.$$

Using the elementary properties of determinants we obtain that

$$g_d(t_1, t_2, t_3, \dots, t_{n+1}) + g_d(t_2, t_1, t_3, \dots, t_{n+1}) = 2g_d(0, 0, t_3, \dots, t_{n+1}).$$

The second statement of the lemma follows immediately from the first by replacing t_{i+1} with t_i .

LEMMA 4: Let $h_l(t_1, \ldots, t_m)$, m > 0, be the complete symmetric function of degree $l \geq 0$ in the commuting variables t_1, \ldots, t_m , $h_0 = 1$. For $r \geq 0$ we define an $m \times m$ matrix

$$D_{mr} = D_{mr}(t_1, \dots, t_m) = \begin{pmatrix} 1 & 1 & \dots & 1 \\ t_1 & t_2 & \dots & t_m \\ t_1^2 & t_2^2 & \dots & t_m^2 \\ & & & \dots & \\ t_1^{m-2} & t_2^{m-2} & \dots & t_m^{m-2} \\ t_1^{m-1+r} & t_2^{m-1+r} & \dots & t_m^{m-1+r} \end{pmatrix}.$$

Then

$$\det(D_{mr}) = h_r(t_1, \dots, t_m) \prod_{1 \le p < q \le m} (t_q - t_p).$$

Proof: We use the notation of [8, pp. 23 – 24]. For $\alpha = (\alpha_1, \ldots, \alpha_m)$ we define a polynomial $a_{\alpha} = a_{\alpha}(t_1, \ldots, t_m)$ in commuting variables obtained by antisymmetrizing of $t_1^{\alpha_1} \ldots t_m^{\alpha_m}$, i.e.

$$a_{\alpha} = \sum_{\sigma \in S_m} (\operatorname{sign} \sigma) t_{\sigma(1)}^{\alpha_1} \cdots t_{\sigma(m)}^{\alpha_m}.$$

Let $\lambda=(\lambda_1,\ldots,\lambda_m)$ be a partition in not more than m parts, i.e. $\lambda_1\geq\cdots\geq\lambda_m\geq0$, and let $\delta=(m-1,m-2,\ldots,1,0)$. Then $a_{\lambda+\delta}$ can be written as a determinant

$$a_{\lambda+\delta} = \det(t_i^{\lambda_j + m - j})$$

and the Schur function $s_{\lambda}(t_1, \ldots, t_m)$ related with λ is equal to $a_{\lambda+\delta}/a_{\delta}$. Clearly, for $\lambda = (r)$

$$D_{mr} = (-1)^{m(m-1)/2} a_{\lambda+\delta}, \quad D_{m0} = (-1)^{m(m-1)/2} a_{\delta} = \prod_{1 \le n \le q \le m} (t_q - t_p).$$

This gives immediately the proof of the lemma because

$$s_{(r)}(t_1,\ldots,t_m)=h_r(t_1,\ldots,t_m).$$

The following lemma is an immediate consequence of Lemma 1.

LEMMA 5: Let $c_1, \ldots, c_n, d_0 \geq 0$ and let $d_1, \ldots, d_{n-2} \geq 1$, $d = (d_1, \ldots, d_{n-2})$. Then in the notation of Lemma 1 for $\bar{x} = \rho_1 e_{11} + \cdots + \rho_n e_{nn}$, $\bar{y}_{i_q j_q}$, $q = 1, \ldots, n$,

$$\begin{split} &\bar{x}^{d_0}s_{2n-2}(\bar{x}^{d_1},\ldots,\bar{x}^{d_{n-2}},\bar{y}_1\bar{x}^{c_1},\ldots,\bar{y}_n\bar{x}^{c_n})\\ &=\sum_{\sigma\in S_n}(\operatorname{sign}\sigma)g_d(\rho_{\sigma(i_1)},\ldots,\rho_{\sigma(i_n)},\rho_{\sigma(j_n)})\times\\ &\times\rho_{\sigma(i_1)}^{d_0}\rho_{\sigma(i_2)}^{c_{\sigma(i_1)}}\ldots\rho_{\sigma(i_n)}^{c_{\sigma(i_{n-1})}}\rho_{\sigma(j_n)}^{c_{\sigma(j_n)}}\bar{y}_{\sigma(1)}\ldots\bar{y}_{\sigma(n)}. \end{split}$$

LEMMA 6: For

$$w(x, y_1, \dots, y_n) = s_{2n-2}(x, x^2, \dots, x^{n-3}, x^n, y_1, \dots, y_n)$$

$$+ \sum_{i=1}^n x s_{2n-2}(x, x^2, \dots, x^{n-3}, x^{n-2}, y_1, \dots, y_i x, \dots, y_n)$$

$$+ \sum_{1 \le i < j \le n} s_{2n-2}(x, x^2, \dots, x^{n-3}, x^{n-2}, y_1, \dots, y_i x, \dots, y_j x, \dots, y_n)$$

and $\bar{x} = \rho_1 e_{11} + \cdots + \rho_n e_{nn}$, $\bar{y}_q = e_{i_q j_q}$, $q = 1, \dots, n$, the equality

$$w(\bar{x}, \bar{y}_1, \dots, \bar{y}_n) = \sum_{\sigma \in S_n} (\operatorname{sign} \sigma) g(\rho_{\sigma(i_1)}, \dots, \rho_{\sigma(i_n)}, \rho_{\sigma(j_n)}) \bar{y}_{\sigma(1)} \cdots \bar{y}_{\sigma(n)}$$

holds where

$$g(t_1,\ldots,t_{n+1}) =$$

$$g_{(1,2,\ldots,n-3,n)}(t_1,\ldots,t_{n+1})+g_{(1,2,\ldots,n-3,n-2)}(t_1,\ldots,t_{n+1})e_2(t_1,\ldots,t_{n+1})$$

and $e_2(t_1,\ldots,t_{n+1})$ is the second elementary symmetric function in t_1,\ldots,t_{n+1} .

Proof: By Lemma 5

$$w(\bar{x}, \bar{y}_1, \dots, \bar{y}_n) = \sum_{\sigma \in S_n} (\operatorname{sign} \sigma) g(\rho_{\sigma(i_1)}, \dots, \rho_{\sigma(i_n)}, \rho_{\sigma(j_n)}) \bar{y}_{\sigma(1)} \cdots \bar{y}_{\sigma(n)},$$

where

$$g(t_1, \dots, t_{n+1}) = g_{(1,2,\dots,n-3,n)}(t_1, \dots, t_{n+1}) + g_{(1,2,\dots,n-3,n-2)}(t_1, \dots, t_{n+1}) \left(t_1 \sum_{q=2}^{n+1} t_q + \sum_{2 \le q \le n+1} t_p t_q \right)$$

and this completes the proof because

$$t_1 \sum_{q=2}^{n+1} t_q + \sum_{2 \le p < q \le n+1} t_p t_q = e_2(t_1, \dots, t_{n+1}).$$

Proof of Theorem 1: By the Amitsur-Levitzki theorem, $s_{2n-2}(x_1,\ldots,x_{2n-2})$ is a polynomial identity for $M_{n-1}(K)$. In order to prove that $w(x,y_1,\ldots,y_n)$ vanishes for all $\bar{x} \in sl_n$ and all $\bar{y}_1,\ldots,\bar{y}_n \in M_n(K)$, it is sufficient, by γ) of Section 1, to establish that $w(\bar{x},\bar{y}_1,\ldots,\bar{y}_n)=0$ for $\bar{x}=\rho_1e_{11}+\cdots+\rho_ne_{nn}$, with $\rho_1+\cdots+\rho_n=0$ and

$$ar{y}_1 = e_{12}, \quad \dots, \quad ar{y}_{j-1} = e_{j-1,j}, \quad ar{y}_j = e_{ji},$$
 $ar{y}_{j+1} = e_{i,j+1}, \quad ar{y}_{i+2} = e_{i+1,j+2}, \quad \dots, \quad ar{y}_n = e_{n-1,n}$

for all $i \leq j$. In virtue of Lemma 6, $w(\bar{x}, \bar{y}_1, \dots, \bar{y}_n) = 0$ if

$$g(t_1,\ldots,t_{n+1}) = g_{(1,2,\ldots,n-3,n)}(t_1,\ldots,t_{n+1})$$

+ $g_{(1,2,\ldots,n-3,n-2)}(t_1,\ldots,t_{n+1})e_2(t_1,\ldots,t_{n+1})$

satisfies the property that $t_1 + \cdots + t_n$ divides $g(t_1, \ldots, t_{j-1}, t_i, t_{j+1}, \ldots, t_n)$ for all $1 \le i < j \le n+1$.

Let
$$v_r(t_1, \dots, t_{n+1}) = g_{(1, \dots, n-3, n-2+r)}(t_1, \dots, t_{n+1})$$
. Then
$$g(t_1, \dots, t_{n+1}) = v_2(t_1, \dots, t_{n+1}) + v_0(t_1, \dots, t_{n+1})e_2(t_1, \dots, t_{n+1}).$$

We apply induction on the difference j-i. For simplicity of the notation we consider the case i=1 only; the general case is similar. First, let j=i+1. By Lemmas 2 and 3

$$v_r(t_1, t_1, t_2, \ldots, t_n) = v_r(0, 0, t_2, \ldots, t_n).$$

Applying Lemma 4 we obtain that

$$v_2(0,0,t_2,\ldots,t_n) = \pm h_2(t_2,\ldots,t_n) \prod_{1 \le p \le q \le n} (t_q - t_p),$$

$$v_0(0,0,t_2,\ldots,t_n) = \pm \prod_{1$$

with the same sign ± 1 . Therefore

$$g(t_1, t_1, t_2, \dots, t_n) = \pm (h_2(t_2, \dots, t_n) + e_2(t_1, t_1, t_2, \dots, t_n)) \prod_{1$$

and easy calculations show that

$$h_2(t_2,\ldots,t_n)+e_2(t_1,t_1,t_2,\ldots,t_n)=(t_1+\cdots+t_n)^2.$$

Hence $g(t_1, t_1, t_2, \ldots, t_n)$ is divisible by $t_1 + \cdots + t_n$.

Now, let j - i > 1. By the inductive assumption

$$g(t_1,\ldots,t_{j-1},t_1,t_j,\ldots,t_n)=(t_1+\cdots+t_n)u(t_1,\ldots,t_n)$$

for some $u \in K[t_1, ..., t_n]$. By Lemma 3

$$v_r(t_1,\ldots,t_{j-1},t_j,t_1,t_{j+1},\ldots,t_n) =$$

$$-v_r(t_1,\ldots,t_{j-1},t_1,t_j,t_{j+1},\ldots,t_n)+2v_r(t_1,\ldots,t_{j-1},0,0,t_{j+1},\ldots,t_n)$$

and we obtain that

$$\begin{split} g(t_1,\dots,t_{j-1},t_j,t_1,t_{j+1},\dots,t_n) \\ &= -(v_2(t_1,\dots,t_{j-1},t_1,t_j,t_{j+1},\dots,t_n) \\ &+ v_0(t_1,\dots,t_{j-1},t_1,t_j,t_{j+1},\dots,t_n) e_2(t_1,\dots,t_j,t_1,t_{j+1},\dots,t_n)) \\ &+ 2(v_2(t_1,\dots,t_{j-1},0,0,t_{j+1},\dots,t_n) \\ &+ v_0(t_1,\dots,t_{j-1},0,0,t_{j+1},\dots,t_n) e_2(t_1,\dots,t_j,t_1,t_{j+1},\dots,t_n)) \\ &= (t_1+\dots+t_n)u(t_1,\dots,t_n) \\ &\pm 2\left(h_2(t_1,\dots,t_{j-1},t_{j+1},\dots,t_n) + e_2(t_1,t_1,t_2,\dots,t_n)\right) \prod_{1 \leq p < q \leq n} (t_q-t_p). \end{split}$$

Obviously, for j > 1

$$h_2(t_1, \dots, t_{j-1}, t_{j+1}, \dots, t_n) + e_2(t_1, t_1, t_2, \dots, t_n)$$

$$= (h_2(t_1, \dots, \dot{t}_n) - t_j(t_1 + \dots + t_n)) + (t_1(t_1 + \dots + t_n) + e_2(t_1, \dots, t_n))$$

$$= (t_1 + \dots + t_n)^2 + (t_1 - t_i)(t_1 + \dots + t_n)$$

and $g(t_1, \ldots, t_j, t_1, t_{j+1}, \ldots, t_n)$ is divisible by $t_1 + \ldots + t_n$. Finally, for

$$\bar{x} = \rho_1 e_{11} + \dots + \rho_n e_{nn}, \quad \bar{y}_1 = e_{11}, \quad \bar{y}_2 = e_{12}, \quad \bar{y}_3 = e_{23}, \quad \dots, \quad \bar{y}_n = e_{n-1,n},$$

$$w(\bar{x}, \bar{y}_1, \dots, \bar{y}_n) = g(\rho_1, \rho_1, \rho_2, \dots, \rho_n) e_{1n}$$
$$= (\rho_1 + \dots + \rho_n) \prod_{\substack{2 \le p < q \le n}} (\rho_q - \rho_p) e_{1n}.$$

If we choose ρ_1, \ldots, ρ_n pairwise different and such that $\rho_1 + \cdots + \rho_n \neq 0$, we obtain that $w(\bar{x}, \bar{y}_1, \ldots, \bar{y}_n) \neq 0$. Hence $w(x, y_1, \ldots, y_n)$ is not a polynomial identity for $M_n(K)$ and this completes the proof of the theorem.

3. The central polynomial

Let [u, v] = uv - vu be the commutator of u and v. We make use of the following result by Razmyslov [9].

LEMMA 7: Let $f(x_1, ..., x_m)$ be a multilinear essentially weak polynomial identity for $M_n(K)$ such that $f([x_1, x_{m+1}], x_2, ..., x_m)$ is an ordinary polynomial identity for $M_n(K)$. Let us express $f(x_1, ..., x_m)$ in the form

$$f(x_1,\ldots,x_m)=\sum \alpha_{pq}p(x_2,\ldots,x_m)x_1q(x_2,\ldots,x_m),$$

where p and q are monomials not depending on x_1 . Then

$$f^*(x_1,\ldots,x_m)=\sum \alpha_{pq}q(x_2,\ldots,x_m)x_1p(x_2,\ldots,x_m)$$

is a central polynomial for $M_n(K)$.

By a complete linearization in x of a homogeneous of degree k in x polynomial $w(x, y_1, \ldots, y_n) \in K\langle x, y_1, \ldots, y_n \rangle$ we mean the multilinear in x_1, \ldots, x_k component $w'(x_1, \ldots, x_k, y_1, \ldots, y_n)$ of the polynomial $w(x_1 + \cdots + x_k, y_1, \ldots, y_n)$. Now we prove the main result of our paper.

THEOREM 2: Let $w'(x_1, \ldots, x_k, y_1, \ldots, y_n)$ be the complete linearization in x of the essentially weak polynomial identity for $M_n(K)$

$$w(x, y_1, \ldots, y_n) = s_{2n-2}(x, x^2, \ldots, x^{n-3}, x^n, y_1, \ldots, y_n)$$

246 V. DRENSKY Isr. J. Math.

$$+ \sum_{i=1}^{n} x s_{2n-2}(x, x^{2}, \dots, x^{n-3}, x^{n-2}, y_{1}, \dots, y_{i}x, \dots, y_{n})$$

$$+ \sum_{1 \leq i < j \leq n} s_{2n-2}(x, x^{2}, \dots, x^{n-3}, x^{n-2}, y_{1}, \dots, y_{i}x, \dots, y_{j}x, \dots, y_{n}),$$

 $k = (n^2 - 3n + 6)/2$, and let

a polynomial identity for $M_n(K)$.

$$f(x_1,\ldots,x_k,y_1,\ldots,y_n,z_2,\ldots,z_k)=w'(x_1,[x_2,z_2],\ldots,[x_k,z_k],y_1,\ldots,y_n).$$

Then

$$f^*(x_1,\ldots,x_k,y_1,\ldots,y_n,z_2,\ldots,z_k)$$

is a central polynomial of degree $(n-1)^2 + 4$ for $M_n(K)$, $k \ge 3$.

Proof: Obviously the polynomial $f(x_1, \ldots, x_k, y_1, \ldots, y_n, z_2, \ldots, z_k)$ is of degree $(n-1)^2 + 4$. By Lemma 7 it is sufficient to show that

$$f([x_1, z_1], x_2, \ldots, x_k, y_1, \ldots, y_n, z_2, \ldots, z_k)$$

is an ordinary polynomial identity for $M_n(K)$ and $f(x_1,\ldots,x_k,y_1,\ldots,z_k)$ is not. By Theorem 1, $w(x,y_1,\ldots,y_n)$ vanishes for $\bar{x}\in sl_n$, $\bar{y}_r\in M_n(K)$, $r=1,\ldots,n$. Hence its linearization $w'(x_1,\ldots,x_k,y_1,\ldots,y_n)$ vanishes for $\bar{x}_h\in sl_n$, $h=1,\ldots,k$, $\bar{y}_r\in M_n(K)$, $i=1,\ldots,n$. Since the commutators $[\bar{x}_h,\bar{z}_h]$ belong to sl_n for $\bar{x}_h,\bar{z}_h\in M_n(K)$, we obtain that $f([x_1,z_1],x_2,\ldots,x_k,y_1,\ldots,y_n,z_2,\ldots,z_k)$ is

Any diagonal matrix $\bar{x} = \rho_1 e_{11} + \cdots + \rho_n e_{nn} \in sl_n$ can be written as a commutator of two matrices. Hence we shall show that $f(x_1, \ldots, x_k, y_1, \ldots, y_n, z_2, \ldots, z_k)$ is not a polynomial identity for $M_n(K)$ if we establish that

$$\tilde{w}(x,y_1,\ldots,y_n)=w'(1,\underbrace{x,\ldots,x}_{k-1},y_1,\ldots,y_n)$$

is not a weak polynomial identity for $M_n(K)$. Obviously, up to a multiplicative constant, $\tilde{w}(x, y_1, \ldots, y_n)$ is equal to the homogeneous component of $w(1+x, y_1, \ldots, y_n)$ of degree k-1 in x. We shall calculate \tilde{w} for

$$\bar{x} = \rho_1 e_{11} + \cdots + \rho_n e_{nn},$$

$$\bar{y}_1 = e_{12}, \quad \bar{y}_2 = e_{21}, \quad \bar{y}_3 = e_{13}, \quad \bar{y}_4 = e_{34}, \quad \bar{y}_5 = e_{45}, \quad \ldots, \quad \bar{y}_n = e_{n-1,n}.$$

We use the notation of Section 2. As in the proof of Theorem 1 it is easy to see that

$$\tilde{w}(\bar{x}, \bar{y}_1, \ldots, \bar{y}_n) = g'(\rho_1, \rho_2, \rho_1, \rho_3, \rho_4, \ldots, \rho_n)e_{1n},$$

where $g(t_1, \ldots, t_{n+1})$ is the polynomial from Lemma 6 and $g'(t_1, \ldots, t_{n+1})$ is the homogeneous component of degree k-1 of $g(1+t_1, \ldots, 1+t_{n+1})$. Using Lemma 1 it is easy to see that

$$g'(t_1, \dots, t_{n+1}) = ng_{(1,2,\dots,n-3,n-1)}(t_1, \dots, t_{n+1})$$

$$+ ng_{(1,2,\dots,n-3,n-2)}(t_1, \dots, t_{n+1})h_1(t_1, \dots, t_{n+1})$$

$$= n(v_1(t_1, \dots, t_{n+1}) + v_0(t_1, \dots, t_{n+1})h_1(t_1, \dots, t_{n+1})).$$

Applying Lemmas 2 – 4 we obtain that for $r \geq 0$,

$$\begin{split} v_r(t_1,t_2,t_1,t_3,t_4,\ldots,t_n) &= -v_r(t_1,t_1,t_2,t_3,\ldots,t_n) + 2v_r(t_1,0,0,t_3,\ldots,t_n) \\ &= -v_r(0,0,t_2,\ldots,t_n) + 2v_r(t_1,0,0,t_3,\ldots,t_n) \\ &= \pm h_r(t_2,\ldots,t_n) \\ &\prod_{\substack{1 \leq i < j \leq n \\ i,j \neq 2}} (t_j-t_i) \pm 2h_r(t_1,t_3,t_4,\ldots,t_n) \end{split}$$

Hence

$$\begin{split} g'(t_1,t_2,t_1,t_3,t_4,\ldots,t_n) &= nv_1(t_1,t_2,t_1,t_3,t_4,\ldots,t_n) \\ &+ nv_0(t_1,t_2,t_1,t_3,t_4,\ldots,t_n)(2t_1+t_2+t_3+\ldots+t_n) \\ &= \pm n((t_2+t_3+\ldots+t_n)+(2t_1+t_2+t_3+\ldots+t_n)) \prod_{\substack{2 \leq i < j \leq n \\ \pm 2n((t_1+t_3+t_4+\ldots+t_n)+(2t_1+t_2+t_3+\ldots+t_n))} \prod_{\substack{1 \leq i < j \leq n \\ i,j \neq 2}} (t_j-t_i) \\ &= 2n(t_1+\ldots+t_n) \left(\pm \prod_{\substack{2 \leq i < j \leq n \\ i,j \neq 2}} (t_j-t_i) \pm \prod_{\substack{1 \leq i < j \leq n \\ i,j \neq 2}} (t_j-t_i) \right) \\ &\pm 2n(t_1-t_2) \prod_{\substack{1 \leq i < j \leq n \\ 1 \leq i \leq j \leq n}} (t_j-t_i). \end{split}$$

Now, if we choose pairwise different ρ_1, \ldots, ρ_n such that $\rho_1 + \cdots + \rho_n = 0$ we obtain that

$$v'(\rho_1, \rho_2, \rho_1, \rho_3, \rho_4, \ldots, \rho_n) \neq 0.$$

This means that $\tilde{w}(x, y_1, \ldots, y_n)$ is not a weak polynomial identity for $M_n(K)$ and this completes the proof of the theorem.

References

- V. Drensky, A. Kasparian, Polynomial identities of eighth degree for 3 × 3 matrices, Annuaire de l'Université de Sofia "St. Kliment Ohridski". Faculté de Mathématiques et Informatique Livre 1 77 (1983), 175–195.
- [2] V. Drensky, A. Kasparian, A new central polynomial for the 3×3 matrices, Communications in Algebra 13 (1985), 745–752.
- [3] V. Drensky, G.M. Piacentini Cattaneo, A central polynomial of low degree for 4 × 4 matrices, Journal of Algebra (to appear).
- [4] V. Drensky, Ts. Rashkova, Weak polynomial identities for the matrix algebras, Communications in Algebra (to appear)
- [5] E. Formanek, Central polynomials for matrix rings, Journal of Algebra 23 (1972), 129-132.
- [6] E. Formanek, The polynomial identities and invariants of $n \times n$ matrices, Published for the Conference Board of the Math. Sci. Washington, DC, AMS, Providence RI, CBMS Regional Conference Series in Math. 78 (1991)
- [7] P. Halpin, Central and weak identities for matrices, Communications in Algebra 11 (1983), 2237-2248.
- [8] I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press (Clarendon), Oxford, 1979.
- [9] Ju.P. Razmyslov, On a problem of Kaplansky, Izvestiya Akademii Nauk SSSR Ser. Mat. 37 (1973), 483-501 (Russian). Translation: Mathematics of the USSR Izvestiya 7 (1973), 479-496.