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ABSTRACT
For n > 3 we find a central polynomial of degree (n —1)2 +4 for the n x n
matrix algebra over a field of characteristic 0. For n = 3, 4 our polynomial
coincides with the known central polynomials of minimal degree and for

n > 4 the result gives new central polynomials. Until now, for n > 4 the

minimal degree of the known central polynomials was n2.

Introduction

Let K(X) be the free associative algebra over a field K of characteristic 0. An
element f(z1,22,...,&m) € K(X) is called a central polynomial for the n x n
matrix algebra M,(K) if f(ri,72,...,7m) lies in the center of M,(K) for all
T1,72,...,Tn € My(K), and f is not a polynomial identity for M, (K). The first
central polynomials for any n were constructed by Formanek and Razmyslov in
(5] and [9] with two different methods. The construction of Formanek yields
a central polynomial of degree n2. The original Razmyslov polynomial was of
higher degree but Halpin [7] showed that the method of [9] also gives rise to a
central polynomial of degree n?. For a long time this value was thought to be
the minimal value for the degree of central polynomials for n x n matrices, and
this is in fact the case for n = 1 and n = 2. But the author with Kasparian in
[2] and with Piacentini Cattaneo in [3] found central polynomials of degree 8 for
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M;(K) and of degree 13 for M4(K), respectively. The main result of this paper
is that we construct a central polynomial for M,,(K) of degree (n—1)2+4 for any
n > 3. For n > 4 our central polynomial is of degree less than the minimal known
degree n?. For n = 3 it is of minimal possible degree as it was shown in [1]. For
n = 4 we obtain the same central polynomial as in {3] which is of minimal known
degree and agrees with the conjecture of Formanek [6] that the minimal degree
of the central polynomials for M,(K) is (n? + 3n — 2)/2. To obtain the central
polynomial of degree (n —1)% + 4 we give explicitly the following essentially weak
polynomial identity for M, (K):

2 -3
w(x,yl,...,yn) = Son—2(Z, 2%, .. ., 2" %, 2™, Y1, ., Un)
-3 ,.n—2 X
+ xszn 2(x:v, S ET T YLy Uiy Yn)
- -2
+ Z Son— 2(1: .’l‘ 'n ’x'n )yla"-ayixa"'ayjza"'ayn),
1<i<j<n

where s,,(Z1,...,Tm) is the standard polynomial of degree m. By the Razmyslov
approach in [9] this gives rise to a central polynomial of the right degree. Our
essentially weak polynomial identity is a generalization of these found by the
author and Rashkova [4] for n = 3 and in [3] for n = 4. Our starting point was
(3] and we follow its exposition. We also refer to [3] for the missing details.

1. Preliminaries

Let K be a field of characteristic zero. We denote by K(X) the free associative
algebra over K freely generated by a countable set of variables X = {z1,x2,...}
and by K(z1,...,2,) the subalgebra of rank m. We also use other variables,
e.g. T,Y1,.--,Yn, to denote the free generators. We recall some background.

a) To a polynomial

g(tla v ,tn+1) = zaptzl’l o 'tfm'-l:ll
in n + 1 commuting variables t;,...,{,41 We associate the polynomial
¢(g) d)(g)(x YlyeorsYn) = Z apxpl Y1 2P2yy - - - TPy, TP

from € K(z,91,....yn). Every f = f(z,v¥1,-..,¥n) € K(z,¥1,-..,yn) which is
multilinear in g, ..., y, may be written in the form

f = Za"mey"‘lmmyh o 'xp"y"nxan = Z ¢(gv‘)(x’ Yryseeos y‘f‘n)'
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B) Let n be fixed and let e;5, ¢, = 1,...,n, be the matrix units from M,(K).
To any set {§; = e; j,| ¢ = 1,...,n} we relate an oriented graph with n vertices
1,2,...,n and edges (iq,7¢), ¢ =1,...,n. In order to check if f(z,y1,...,yn) =
S &(9-)(®y Yry» - - > Yr, ) is & polynomial identity for M, (K) it is sufficient to cal-
culate f(Z,91,...,9n) for £ = prye11+- - -+ pnenn, where py, .. ., p, are commuting
variables and §, = €;_j., ¢ = 1,...,n, for all possible (i4,3,), ¢ =1,...,n. Then

¢(g)(:E, €irjiseeoo einjn) = 6g(pi1 1 Pigs 3 Pins Pin )eiljn’

where 6 equals 1 or 0, depending on whether (i1, j1), (i2,52),- - -, (in,Jn) is OF is
not a path in the graph.

Definition: A polynomial f(zy,...,2m) € K{X) is called a weak polynomial
identity for M, (K) if f(zi,...,Zm) vanishes when evaluated on all elements of
the Lie algebra sl,, of all traceless matrices of M, (K). If the weak polynomial
identity is not a polynomial identity for M, (K) it is called an essentially weak
polynomial identity. |

7v) Let the polynomial f(z,y1,...,¥s) € K(Z,¥1,...,¥n) be multilinear in
Y1,--+,Yn- In order to prove that f(z,y1,...,yn) vanishes for all Z € sl, and all
T1,-+-,Un € Mu(K) it is sufficient to consider Z = pijeir + -+ + pneénn, Where
P1,.. ., Pn are commuting variables satisfying py + -+ + pn = 0 and ¥, = € ;, ,
g=1,...,n. Let us assume that f(z,y1,...,yn) = 2. 0(9-) (%, ¥ry»---1Yr.) IS 3
polynomial identity for M,,_;(K). If f(Z,%1,...,¥n) # O then the graph related
to §g = €ij,, ¢ = 1,...,n, contains a path (i,,,jr,), ..., (ir., jr,) going through
all the n vertices. Up to a permutation of the indices 1,...,n, this is one of the
paths (1,2),...,(¢,i+1),...,(3 —1,4),(4,9), (5,5 +1),...,(n—1,n), where i < j.
Now, if g-(t1, - -, ti, tit1,- - -ty Listj1, . . o, tn) is divisible by t; +t2 4 - - +1, for
all ¢ < j, this means that f(Z,#i,...,9n) vanishes for T € sl and §1,...,¥n €
M. (K).

2. The weak polynomial identity
The main result of this section is the following.

THEOREM 1: Let K be a field of characteristic 0. The polynomial
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= 2 n—-3 _..n
w(xayla"'ayn)_s2n-—2(x’x yeoes T y T ayla"'ayn)
n
§ : 2 n—3 -2
+ $32n_2(-73,$ yer s T ,xn vyla"wyiz,-"’yn)
i=1

2 n—-3 .n—2
+ E Son—2(Z, 2% .., "2, 2" T Y1, YT, YT, Yn)
1<i<j<n

from K(z,y1,...,Yn) is an essentially weak polynomial identity for M,(K),
n > 3, and w(Z,Y1,...,9n) =0 for all Z € sl, and all §1,...,9n € ML(K).

The proof of the theorem is based on several lemmas.

LEMMA 1: Let dy,ds,...,dn—2 be positive integers, d = (d,ds,...,dn—2) and
let

da d
)

fd(x'lyl)‘ . '7yn) = 32n—2(1'd1,1? ey & "—z,yly . '7yn)'

P n . . . -
Let & = Zp:l Ppepp, Where py,...,p, are commuting variables, §, = e; ; €

M.(K),q=1,...,n. Then

fa(Z, 915+, Tn) = Z (sign @) ga(Po(iy)s Po(iz)s - - - 1 Po(in)r Po(in) o (1) - - - Fa(n)>
0€S,

where g(tl,tZa . "tn+1) € K[tlat% .. -atn+1]7

dy dy dy
tkl tk2 .. t

kn—2
o - B .
ga(ti,t2, ... thy1) = Z +| *k k2 k2
k1< <hn—2 da-z  dn—z  ydeca
1% 2% P P

and the sign £1 is equal to the sign of the permutation in the summand of fq

dz | .,

d dn_ dn-
Y1 Yy —12 Yky * Ykp—1T T Yk g Yhneg =18 " Yku_y " Yn.

In particular, ga(ty,...,tat1) =0ifd; =d; forsome1 <i<j<n-2.

Proof: Let T = pie;1 + -+ + pnénn and let §; be matrix units, ¢=1,...,n. If

. = = =da_2 3 = . =
21 =I%,.. ., B2 =221 =§1,..., Z2n-2 = n then

fd(:i’ P1s- - ’gﬂ.) = Z (Sign 0)26(1) te 20(211—2)‘
0€S2n-2
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If for p € San-2 there exists an ¢ such that z,;) = % 4e: and Zo(i41) = T 422 then
the summand (sign p)Z,(1) - - - Zo(2n—2) Participates in fa(Z,%1,...,¥n) together

with —(sign p)fp(l) < Zp(i—1)2p(i+1) Zp(d) Zp(i4+2) * ** Zp(2n—2)- Since

s = = s _ mdp, =d dp, mdp,
Zo(0) Zpli+1) ~ Zp(i+1)Zp(i) = T 1T — T2 T =0,

the contribution to f4(Z, %1, ..,¥n) is given only by these summands such that

no % and z%: are adjacent. In virtue of 3) from Section 1

fd(-’i'y Y1y gn) = Z (Signa)gd(pa(il)y Pa(iz)s -1 Po(in) pa(j,.))ga(l) ot ya(n)
c€ES,

for some polynomial g4(y1,...,Yn+1) € K[t1,...,tns1]. The polynomial g4 is

obtained from

¢(gd)(x1y1,'-‘,yﬂ) = Z Z Y1 Yk —1T dr(1)

k1<...<kn—2 TESn_2

d, dr(n- dr(n-
kal "'ykg—lx (2) ... % 3)yk"—3...ykn_2_1x ( z)yk"_g"'y’n'
Hence
gd(tly'“’tn-{—l) = Z iu;c(tl,.. 'n+1)
k1<..<kn_2

where k = (k1,...,kn-2) and

"

7(1) (n—2

uk(tey. .y tag1) E (signT)t, . ,.<"2 ).
TESn—2

Obviously ui(t1,...,taq1) is equal to the determinant of the (n — 2) x (n — 2)
matrix with entry tZ: in the p-th row and the g-th column. Clearly the sign +1
in the sum Y +uk(t1,...,tn+1) is the same as prescribed in the statement of the
lemma. |

LEMMA 2: For the polynomial g4(t1,...,tn41) from Lemma 1 and for1 <i<n
gd(tl, ey t;-1,0,0, tig2y ey tn+1)

is equal up to a sign to the determinant

RTINS U S
d d

Aol Bty thy, ...oth,
B A g
Lt L o
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Proof: By Lemma 1, g4(#1,...,ti_1,0,0,t;12,...,t.41) is equal to a linear com-
bination with coefficients +1 of the determinants of the (n —2) x (n —2) matrices
(t‘,::) such that 7 and 7+1 do not participate between the indices ky < --- < kp_s.
Hence in the notation of the proof of Lemma 1

gd(th . -’ti—laoa Oa ti+2v .. 'vtn+l) = Z :tuk(tly e atn+l)a

where the summation runs on all £k = (k,...,k,—2) such that 1 < k; <
o K kp2g €41, kg #4,04+1,¢=1,...,n — 2. The same determinants
ug(ty, ..., tny1) participate in the extension by the first row of the (n—1) x (n—1)
determinant A;. The only problem is to show that the signs in both the expres-
sions are the same. For

j#4i+1 and k=(1,...,i—1,i+2,...,j—1,j+1,...,n+1)
the sign of @; = uk in ga(ts,...,1:i-1,0,0,¢i42,...,tn41) is equal to the sign of
(% y1) - (% g )Yy (35 yiga) - X

X (@t gy (@ ) - (@)t

in the expression of s3p_a(z®,...,2%~2,4;,...,9,). Obviously for j > i+1 (or
for j < i — 1) the signs of %; and ;41 in both g4 and A; are opposite, the same
holds for the signs of 4;_; and %;,5. Hence

Aj=1t1—Uz+-- U1 Flip2E - L lnp1
= igd(tl, . 'ati—-lv 07 0) ti+2a e -atn+1)- |

LeEMMA 3: For gq(t1,...,tn41) from Lemma 1 and1<i<n
gd(ty, .., tng1) +galts, - ticy, tiga, tis tigay o ooy tng)
= 2gd(t1, <o ti21,0,0, tiv2ye- oy tn+1)-
Therefore

gd(th . 'at'i—lati’tiati+l, .. -atn) = gd(tla R ,ti—-laOy Oy t'i+1, . ',tn)-

Proof: We consider the case i = 1; the proof for ¢ arbitrary is similar. By
Lemma 1

ga'(tlr t?v t3y ey tn+1) =
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g g e te Lt
+ D
Z tdn—2 tdn—Z tdn—Z tdn—2 tdn—2 tdn—Z
1 2 ks PN P k1 >2 k1 N kn_2
di dy dy dy dy dy
t] tkz . tkn—2 ty tk2 - tkn_2

+y =+ ~
dn 2 ,dn_ dn_ dn_s  ,dn_ dp—
k2>2 S P P 2 P
Using the elementary properties of determinants we obtain that
gd(tla to,t3,..., tn+1) + gd(t2,t1, t3, ..., tn+1) = 2gd(0, 0,ts,..., tn+1).
The second statement of the lemma follows immediately from the first by
replacing t,'+1 with ti. B

LEMMA 4: Let hi(ty,...,tn), m > 0, be the complete symmetric function of
degree | > 0 in the commuting variables ty,...,t,,, ho = 1. For r > 0 we define

an m X m matrix

1 1 1
tl t2 tm
t2 t2 T
Dyr = Dmr(tlv-'-,tm) = ! m
_2 —2 -
t’"1 ty tm2
tTI‘n— +r t'm—1+'f‘ tm—1+'r

Then

det(Dimr) = helts, - otm)  []  (ta—tp)-
1<p<g<m

Proof: 'We use the notation of [8, pp. 23 — 24]. For a = (ai,...,a,) we
define a polynomial ¢q = a,(t1,...,tr) in commuting variables obtained by
antisymmetrizing of ¢ ...t%m ie.
O = Z (signo)tjzl) . --tgi’;ﬂ).
0ESH

Let A = (A;,...,An) be a partition in not more than m parts, i.e. Ay > --- >

Am > 0,and let § = (m —1,m — 2,...,1,0). Then ayys can be written as a
determinant
Aj+m—j
ar+s = det(t; )
and the Schur function sx(ty,...,t,) related with X is equal to ay+s/as. Clearly,
for A = (r)

Dpy = (-1)"" D20 5, Do = ()™ V25 = [ (tg—t,).
18p<gsm
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This gives immediately the proof of the lemma because

S(,-)(tl,...,tm)=hr(t1,...,tm). [ |

The following lemma is an immediate consequence of Lemma 1.
LEMMA 5: Let ¢q,...,¢n,do > 0 and let dy,...,dn_2 > 1,d = (dl, .. .,dn_g).
Then in the notation of Lemma 1 for T = p1e11 + -+ pnenn, ¥ij,, 4 =1,...,n,

~d ~d
T80, _o(T™,..., T

= Z (sign o)ga(Pa(ir)s- - -+ Po(in)s Po(in)) X
UGSn
Ca(iy) Co(in_1)

d Co(in) =
X pao(il)pg(i2) e pa‘(i") pd(jjn) ya(l) v ya(n)-

LEMMA 6: For

n

W(T, Y1,y Yn) = S2n—2(T, 2% .., 2732, Y1,y Yn)

n
2 n—-3 ,n—2
+E TSop—a(x, %, ..., 2" 2" T Y, YTy e Yn)
=1

2 n—3 .n—2
+ E Son—2(z, % ..., 2", 2" 5 Y1, LY L YT Yn)
1<i<j<n

and T = pye11 + -+ prenn, Yg = €5, 4 = 1,...,n, the equality

W(Z, P15+ s Un) = Z (Signa)g(pa(il)a -« 3 Pa(in)y pa(j,.))ga(l) **Yo(n)
0ESn

holds where
g(tl, - ,tn+1) =
9(1,2,n=3n)(t1 - s tag1) T 91,2, n=3n-2)(t1, - - s tnt1)ea(ts, - -y tng1)
and ey(ty,...,tn41) is the second elementary symmetric function in ty,...,tn41.

Proof: By Lemma 5

W(E, J1y+.-rFn) = Z (sign)g(Po(iy)r - - - s Po(in) Po(in)) o) * - * Fo(n)
cES,
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where

gty tne1) =91,2,..n—3,n) (1, - - s tny1)

n+1
+901,2,...m-3n-2)(t1s . s tng1) | 01 Z ty + Z tptg
q=2 2<p<gsn+l
and this completes the proof because
n+1
1y tot Y. tptg=ealty,... tny1). B
q=2 2<p<q<ntl

Proof of Theorem 1: By the Amitsur-Levitzki theorem, son_2(21,...,Z2n-2)
is a polynomial identity for M,_1(K). In order to prove that w(z y1,...,Yn)
vanishes for all Z € sl, and all §y,...,5, € M,(K), it is sufficient, by v) of
Section 1, to establish that w(Z, §1,...,9n) =0 for T = pre11 +- - -+ Pnénn, With
pr+ -+ pp =0 and

h=e2 ..., Fji-1=¢€j-15 Uj==€j,
Ui+1 = €ij+1, Tj42 =€541,542y vy Un =€n_ipn
for all ¢ < j. In virtue of Lemma 6, w(Z, §1,...,9yn) =0 if

g(ts, - tnt1) = 91,2,....n=3,m) (E1s -+ -, tng1)
+91,2,...n-3m-2)(t1,- - s tnr1)ea(ts, ..., tny1)

satisfies the property that ¢; + --- + ¢, divides g(t1,...,tj_1,8;,¢;41,...,1,) for
alll<i<j<n+1l

Let vr(tl, ey tn+1) = g(l,...,n—a,n—2+r)(tla ey tn+1). Then
g(tl, ceey tn+1) = v2(t1, R, tn+1) + ’U()(tl, ceey tn+1)e2(t1, ey tngl)-

We apply induction on the difference j — i. For simplicity of the notation we
consider the case i = 1 only; the general case is similar. First, let j =i+ 1. By
Lemmas 2 and 3

’Ur(tl,tl, to,... ,tn) = 'UT(O,O,tQ, “an ,tn).
Applying Lemma 4 we obtain that

v3(0,0,83,...,t) = halts,..ota)  [[ (tg—tp),
1<p<g<n
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w(0,0,ts,....tn) =% [[ (ta—1t)

1<p<gsn

with the same sign +1. Therefore
g(tl,tl,t2,...,tn) = :f:(hz(tz,...,tn)+62(31,tl,£2,...,tn)) H (tq—tp)
1<p<g<n

and easy calculations show that

hz(tz, .. .,tn) + ez(tl,tl,tz, .. .,tn) = (tl + -4 tn)2.

Hence g(t1,1,t2,...,t,) is divisible by ¢; + - -- + ¢,.
Now, let j — i > 1. By the inductive assumption

g(tl’ ] latlatjy .y n)=(tl+"'+tn)u(t1"--,tn)

for some u € K[ty,...,t,). By Lemma 3

Ur(ty, .o b1, b b, ey ) =

~Up(t1ye ey b1y bt tia s e ey tn) + 200(10 oy 8521, 0,0, 841, B)

and we obtain that
g(ty, .- tj-1, 5,81, 41y estn)

= —(vz(tl, s tisn it b, .. cytn)

+vo(ty, . tjon, bty tigt, s tn)ea(tey oo 8y, B tg1, .- -, )

+ 2(va(ty .- 5 tj=1,0,0, 8541, ..., T0)

+vo(ty, .5 tj-1,0,0,5401,. .., tn)ea(ts, ..ot t1, tiga, .-y tn)

=(t1+...+ta)ulty,. .. ts)

£2(ha(ts, - o bt gt o ta) F (bt ta)) ] (8 —t)

1<p<qsn
p.9#i

Obviously, for j > 1

hz(tl, .. ')tj—-latj+l) .. .,tn) + ez(tl,tl,tz, . .,tn)

= (ha(t1,- . tn) =Gt + - +10)) + (ta(tr + - +ta) + €a(t1, - -, 1))
=i+t (=)t )
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and g(t1,...,t;,t1,tj41,...,ts) is divisible by t; + ... + t,.
Finally, for

I=prenn+ -+ Pnnn, Y1=e€n, Y2=¢€12, Yz=¢€23, ..., Yn=E€n_1n,

'UJ((Z', !717 R 7?‘") = g(pl»PhP% .. -,pn)eln

=(pr+- -+ pn) H (Pg — Pp)eln.
2<p<g<n

If we choose p, . . ., p» pairwise different and such that p; +- - -+pn # 0, we obtain
that w(Z,31,...,¥.) # 0. Hence w(z,y1,...,¥s) is not a polynomial identity for
M, (K) and this completes the proof of the theorem. 1

3. The central polynomial

Let [u,v] = uv — vu be the commutator of © and v. We make use of the following
result by Razmyslov [9].

LEMMA 7: Let f(z1,...,Zm) be a multilinear essentially weak polynomial iden-
tity for M,(K) such that f([z1,Zm+1},Z2,...,Zm) is an ordinary polynomial
identity for M, (K). Let us express f(z1,...,Zn) in the form

flx1, .., Zm) = Z OpgD(Z2, -, Tm)T19(Z2, - . ., Tm),

where p and q are monomials not depending on x,. Then

f*(xlv .. -,.’L‘m) = Zapqq(x% .. .,.’L‘m)l'lp(l'z, .. 'axm)

is a central polynomial for M, (K).

By a complete linearization in z of a homogeneous of degree k in z polynomial
w(z,y1,...,9n) € K{z,¥1,...,Yn) we mean the multilinear in z,,...,z; com-
ponent w'(z1,...,Zk,¥1,---,Yn) Oof the polynomial w(z1 + -+ + T, ¥1,...,Yn).
Now we prove the main result of our paper.

THEOREM 2: Let w'(xy,...,%k,¥1,...,Yn) be the complete linearization in x of
the essentially weak polynomial identity for M,,(K)

n—3

w(Z, Y1,y Yn) = szn_g(z,x2,...,x Yy X Y1,y Yn)
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-3 -2
+2132n 2(1; Z yeoos T y T z" 9y1a-'~»y‘ix1""yn)

§ : -3 ,n-2
+ 3271—-2(1: IL' 3oy X ,» T aylv"ayixa'-wij,--'ayn)a
1<i<j<n

k= (n?-3n+6)/2, and let

f(xla ey Ths Y1y ooy Yny 22, 'azk) = wl(xlv [1:2,22], ey [xka zk]a Y1, - 'ayn)-

Then

f‘(xla"',zkaylv"*7y'naz21"'azk)
is a central polynomial of degree (n — 1) + 4 for M,,(K), k > 3.

Proof: Obviously the polynomial f(x1,...,Zk,Y1,---,Yn,s22,--.,2k) is of degree
(n —1)? + 4. By Lemma 7 it is sufficient to show that

f([ml,zll,l‘m---,iL‘k,:lll,--~,yn,22,---,2k)

is an ordinary polynomial identity for M, (K) and f(x1,...,Zk, y1,- .., 2) iS nOt.
By Theorem 1, w(z, ¥y, - - -, Yn) vanishes for Z € sl,, §» € Mp(K),7=1,...,n
Hence its linearization w'(z1,...,Zk,Y1,--.,Yn) vanishes for z, € sl,, h =
.k, Jr € Mp(K),i=1,...,n. Since the commutators [Z, Z,] belong to sl,
for Zp, zn € M,(K), we obtain that f([z1,z1],Z2,. ., ks Y15+, Yns 225 -+, 2k) I8
a polynomial identity for M, (K).
Any diagonal matrix & = p1e11+- * *+Pn€nn € Sl can be written as a commuta-
tor of two matrices. Hence we shall show that f(£1,...,%k, Y1,--«sYny 22, .+ 2k)
is not a polynomial identity for M, (K) if we establish that

"I)(I’y17"',yﬂ) =wl(1’x""1x’y1""’yn)
N e’
k-1

is not a weak polynomial identity for M,(K). Obviously, up to a multiplicative
constant, wW(z,y1,...,¥n) 1S equal to the homogeneous component of
w(l +z,91,...,Yn) of degree k — 1 in z. We shall calculate w for

T =pi1e11+ -+ Pnnn,

Ji=e12, Ja=¢€2, Ys=¢€13, Ya=¢€34, Ys=¢€45 ..., Yn=€En_1,n
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We use the notation of Section 2. As in the proof of Theorem 1 it is easy to see
that

ﬁ)(-’i‘, gl, sy gn) = 9/(:01, P2,P1,P3,P4y- -+, pn)el'rn
where g(t1,...,tn+1) is the polynomial from Lemma 6 and ¢'(¢1,...,¢,41) is the

homogeneous component of degree k —1 of g(1+1¢;,...,14+tp41). Using Lemma
1 it is easy to see that

g'(t1, .y tat1) =ng(1,2,..n~3n-1)(t1,- - -, tnt1)
+7n9(1,2,...n-3n-2)(t1, - - - tng1)h1(ts, . . . tny1)
:n(vl(tl, ceey tn+1) + 'U()(tl, ey tn+1)h1(t1, . tn+1)).

Applying Lemmas 2 — 4 we obtain that for » > 0,

vr(t1, b2, t1, tay bay o t) = — Up(ty, E1y tay tay - o E) + 200(21,0,0, 83, . . ., 1)
=—v.(0,0,22,...,tn) + 2v.(£1,0,0,t3,...,%,)
=+ h(ta,..., 1)
[T @ -t)£2h(t,ts ta,. . 1)

2<i<j<n

IT &-t).

1<i<j<n
1,7#2

Hence
g'(t1,ta, t1, 3, b, . . . ) = nor(t, to, b1, ta, ta, .. oy tn)
+nvg(ty, te, t1,t3, 4, ., tn) (2t +ta +ts+ ... + tn)
=tn((ta+ts+...+ta)+ @i+ta+ts+...+ta) [[ ti-t)
2<i<ji<n
tom((ti+ta+tat. . +ta)+ @t tatts+...+ta) [ (4 —t)

1<i<j<n
1,572

=t +...+t) |2 J[ G-t)x J] @-t)

2<igj<n 1<i<j<n

1,7#2
+ 2n(t1 - tz) H (tj - ti).

1<i<j<n
3,i%2

Now, if we choose pairwise different py,...,pn such that p; +---+ p, = 0 we
obtain that

v,(plap2aplap31p47 .. '7pn) 71'- 0.
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This means that @(zx,y1,...,¥r) is not a weak polynomial identity for M, (K)
and this completes the proof of the theorem. ]
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